LONGITUDINAL STREAMLINING OF A SEMIINFINITELY LARGE PLATE
BY A VISCOELASTIC FLUID WITH HEAT TRANSFER
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A numerical analysis is made of the dynamic boundary layer and the thermal
boundary layer at a semiinfinitely large plate longitudinally streamlined by a
viscoelastic fluid.

The first one to solve the equations of a boundary layer for a Newtonian fluid longi-
tudinally streamlining a semiinfinitely large flat plate was Blasius [I]. Subsequently
Bairstow [2], Goldstein [3], and Topfer [4] obtained approximate solutions to the Blasius
problem. An exact numerical solution was obtained later by Howarth [5]. These results are
all included in the well-known monographs by Schlichting [6], Rosenhead [7], and Pai [8].
Owing to advances in technology, there have appeared many new useful fluids., Inasmuch as
these fluids exhibit viscoelastic characteristics, they cannot be described on the basis of
Navier—Stokes equations. Many researchers have attempted to formulate equations of rheo-
logical state for such non-Newtonian fluids. Noted among them should be Oldroyd [9] and
Walters [10]. In the latter study fluids with a vanishing memory were considered, known as
Walters fluids A" and B'. The equations of a boundary layer in these fluids have been de-
rived by Beard and Walters [11]. On the basis of these equations, they also solved the
problem of streamlining of the frontal surface of a blunt body by a viscoelastic fluid. The
problem of heat transfer during a flow of this kind was recently solved by Soundalgekar and
Vighnasam [12]. As far as the authors know, the problem of flow and heat transfer during
longitudinal streamlining of a semiinfinitely large plate by a Walters B' viscoelastic fluid
has not yet been solved. Beard and Walters have established, however, that self-adjoint
solutions to this problem for a Walters B' fluid can be obtained only covering the frontal
stagnation zone. Such solutions do not exist for a longitudinally streamlined semiinfinitely
large plate. We therefore propose to solve this system of nonlinear ordinary differential
equations numerically.

Mathematical Analysis. Let the x axis lie in the plane of the plate and be oriented in
the direction of flow, and let the y axis be normal to it. The equations of rheclogical
state for a Walters B' fluid and the corresponding equations of a boundary layer are [11]:
the equations of motion
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and the boundary conditions
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A change to variables 7 o
n=yV Uz, b=V Upx [ (1), (5)
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TABLE 1. Values of fo, fy, f., fi, fi
n fo f ] f 1] fi f 1 f 1
0,0 | 0,00000000 | 0,00000000 |0,33205730 0,00000000 {  0,00000000 | —0, 19312360
0,2 | 0,00664099 | 0,06640778 | 0,33198380 | —0,00378879 | —0,03751775 | —O0,18201008
0,4 | 0,02655988 | 0,13276415 |0,33146981 | —0,01485620 | —0,07276827 | —0, 17035902
0.6 | 0,05973463 | 0,19893723 | 0,38007909 | —0,03273428 | —0,10558766 | —O0, 15760206
0,8 | 0,10610821 | 0,26470011 |0,32738923 | —0,05691083 | —0,13569675 | —O0,14316088
1,0 | 0,16557171 | 0,32977999 |0,32300708 | —O0,08680637 | —0,16270333 | —0., 12649983
1,2 | 0,23794869 | 0,39377606 | 0,31658915 | —0,12175272 | —0,18611574 | —0, 10715900
1,4 | 0,32298154 | 0,45626171 |0,30786536 | —0,16097565 | —0,20537198 | —O0,08491051
1,6 | 0,42032072 | 0,51675672 |0,29666343 | —0,20358534 | —0,21988713 | —0.05978295
1,8 | 0,52951798 | 0,57475808 | 0,28293099 | —0,24857800 | —0,22911874 | —O0.03217606
2,0 | 0,65002430 | 0,62976566 |0,26675152 | —0,29485209 | —0,23264597 | —0,00291000
2,2 | 0,78119325 | 0,68131030 | 0,24835089 | —0,34124108 | —0,23025319 0,02678845
2,4 | 0,92229002 | 0,72898185 | 0,22809174 | —0,38656225 | —0,29200504 0,05536426
9.6 | 1,0725059 | 0,77945493 |0,20645461 | —0,42967836 | —0,20820755 0,08109046
2,8 | 1,2309972 | 0,81150953 | 0,18400659 | —0,46956600 | —0, 1898716 0,1022844
3,0 | 1,3968081 | 0,84604435 |0,16136032 | —0,50538212 | —0, 16778025 0,11754818
3,2 | 1,5690948 | 0,87608136 | 0,13912806 | —0,53651918 | —0, 14330896 0,12598570
3,4 | 1,7469499 | 0,90176113 | 0,11787625 | —0,56264053 [ —0, 11785941 0,12734769
3,6 | 1,9295250 | 0,92332058 | 0,098086285 | —0,58369019 | —0,09281329 0,12208046
3,8 | 2,1160296 | 0,94111791 | 0,08012592 | —0,59987505 | —0. 06939995 0,11124824
4,0 | 2,3057462 | 0,95551815 |0,064234128 | —0,61162392 | —0,04858450 0,09636581
4,2 | 2,4980394 | 0,96695699 |0,05051975 | —0,61952568 | —0,03100730 0,07916666
4,4 | 2,6023607 | 0,97587075 |0,038672616| —0,62426275 | —0,01695781 0,06135975
4,6 | 2,8882477 |°0,98268342 | 0,02948377 | —0,62654248 | —0,00640469 0,04442064
4,81 3,0853203 | 0,98778945 | 0,02187118 | —0,62703875 | 0.00094268 0,02945023
5,0 | 3,2832733 | 0,99154182 {0,01500680 | —0,62634815 | 0,00555197 0,01711495
'5,2 | 8,4818673 | 0,99424546 | 0,01134179 | —0,62496332 | 0,007981214{ 0,007658%6
5,4 | 3,6809187 | 0,99615523 | 0,00792766 | —0,62326282 | 0,00880142 .0,00098343
5,6 | 3,8802903 | 0,99747769 |0,00543195 | —0,62151485 | 0,00853723 | —0,00325677
5,8 | 4,0798815 | 0,99837542 |0,003648414 | —0,61989061 | 0,00762926 | —0,00553991
6,0 | 4,2796205 | 0,99897280 |0,00240204 | —0,61848318 | 0,00641730 | —0.00638138
6,2 | 4,4794569 | 0,99936246 {0,00155017 | —0,61732781 | 0,00514059 | —0,00626174
6,4 | 4,6793562 | 0,99961162 |0,00098061 | —0,61642106 | 0,00394967 | —0,00558265
6,6 | 4,8792954 | 0,99976779 | 0,00060804 | —0,61573679 | 0,00292432 | —O0, 00464854
6,8 | 5,0792593 | 0,99986374 | 0,00036956 | —0,61523831 | 0,00200319 | —0.00366763
7,0 | 5,2792383 | 0,99992153 | 0,00022016 | —0,61488682 | ©0,00145187 | —0,00276543
7,2 | 5,4792263 | 0,99995564 | 0,00012857 | —0,61464641 | 0,00097755 | —0,00200374
7,4 | 5,6792196 | 0,99987538 | 0,00007350 | —0,61448669 | 0,00063975 | —0,00140045
-7;6] 5,8792159 | 0,99998658 | 0,00004129 | -—0,61438349 | 0,00040737 | —0,00094671
- 7,8 6,0792139 0,99999280 | 0,00002270 | —0,61431858 | 0,00025257 | —0,00062027
8,0 | 6,2792129 | 0,99999620 |0,00001224 | —0,6]427882 | 0,00015255 | —0,00039449
8,2 | 6,4792123 | 0,99999801 | 0,00000646 | —0,61425509 | 0,00008978 | —0,00024384
8.4 | 6,6792120 | 0,99999896 |0,00000334 | —0.61424128 | 0.00005146 | —0.00014663
8,6 | 6,8792119 | 0,99999945 | 0,00000170 | —0,61423347 | 0.00002870 | —O.00008586
8,8 | 7,0792118 | 0,99999969 |0,00000846 | —0,61422917 | 0,00001553 | —0,00004898
1 vU . .
u——-Uof',U————-Q—-l/ xo (ﬂf’*‘f)

transforms Egs. (1)—(3) to the system of ordinary differential equations
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with the boundary conditions

Assuming that K « 1,
parameter K,

order equation (6) with three boundary conditions.

the series expansion
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f=Ffo+ Kfr, 6 =00+ K8,

and inserting them into system (6)—-(8), we then equate the correspondlng coefficients of the
various powers of K (except K?) and obtain the set of relatioms
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we replace the sought functions f and 6 with power series in the
This will result in substantial mathematical simplifications of the fourth-
Retaining only the first two terms of

(9



J \
!
z
; 3
4 \§\
0 - 0 ,
o8 32 56 M ® gz m

Fig, 1 Fig. 2

Fig. 1. Velocity profiles: 1) K =03 2) K = 0,05; 3) K =
0.1; 4) K = 0.2,

Fig. 2. Temperature profiles: 1) K =10; 2) K = 0.05; 3)
K =10,1; 4) K= 0.2; (a) Npr = 2; (b) Npy = 3.

B o =0, (10)

g B o) = 5 — 2 fifs” — Rt (11)
88+~—;—— Pr f480 = 0, (12)

o] + % Dr (1,05 -+ fo81) = 0. (13)

The boundary conditions will be

70(0)==0, fo (0} =0, 8,(0) = 1,
F1(0) =0, f1(0)=0, 8,{0)= 0,

fo(oo) =1, 8, (c0) =0,
fo(o0) =0, 8 (c0) = 0.

Equations (10-(13) have been solved numerically for the boundary conditions (14) and the
values obtained for f, and f, are given in Table 1, The values of f' = u/Us corresponding to
various values of K are given in Table 2. The results are also shown graphically in Fig. 1.
It is evident here that the velocity profile becomes broader with higher values of K, The
temperature profile in the boundary layer follows the same trend, namely both 6 and T in-
crease with K (Fig. 2), but they do not decrease with higher values of the Prandtl number.

It would be interesting to explore the dependence of frictional stresses in the boundary
layer on the shear modulus. 1In the given case

ou : ( d2u u ou au)
u 2 .

sy = Mo — — K —_— —
e M TR ey T o ax Y (15

At the plate surface (i.e., at y = 0) both u = 0 and v = 0 so that expression (15) reduces
to the equality
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TABLE 2, Values of f' = u/U,

n | K=0 I K=0,05 K=0,1
8,0 0,00000000 0,00000000 0,00000000
0,2 0,06640778 0,06453189 0,06265601
0,4 0,13276415 0,12912573 0, 12548732
0,6 0, 19893723 0,19365785 0,18837846
0,8 0,26470911 0,25792427 0,25113943
1,0 0,32977999 0,32164483 . 0,31350966
1,4 0,45626171 0,44599311 : 0,43572451
1,8 0,57475808 0,56330214 0,55184620
2,2 0,68131030 0,66979764 0,65828498
2,6 0,77245493 0,76204006 0,75162518
3,0 0,84604435 0,83765534 0,82926633
4,0 0,95551815 0,95308892 0,95065970
5,0 0,99154182 0,99181942 0,99209702
6,0 0,99897280 0,99929366 0,99961453
7,0 0,99992153 - 0,99999412 1,00006670
8,0 0,99999620 1,00000380 1,00001150
9,0 0,99995981 1,00000020 1,00000060

TABLE 3. Values of {—8'(0)}

N
X Pr
2 | 5
0 0,4223082 | 0,5766890
0,05 0,4190823 | 0,5719246
0,1 0,4158565 | 0,5671602
0,2 0,4094048 0,5576313

or, with the aid of relations (5), to

Taylymo = MU V U/vx [ (0) = Uy V Uy/vx ['(0) -+ Kf1 (0)1. (17)
Values of fo(0) and fT(O) taken from Table 1 transform expression (17) to the equality
Tay|y—o = WUo V Uylvx (0.3320 — 0,1931 K). (18)

according to which surface friction decreases with increasing shear modulus K,

We will now examine the effect of elasticity om the local thermal fluxes from plate to
fluid., From the definition

or
X)=—A|—— 19
70 ( ay )y=0 : (19
and relations (5) we obtain
. U, 00
q(X)——hV Py (Tw—Tw)—Wn=o.

The numerical values of {—8'(0)} corresponding to various values of K and Npr are given in
Table 3. We note that the thermal flux decreases with increasing K, but increases with in-
creasing Npr.

NOTATION

u and v, longitud: 1l component and the normal component of velocity; Uy and Tw, velo-~
city and the temperature of the oncoming stream; K, elasticity parameter in the Walters B'
model; Txy, shearing stress; q, thermal flux density; u, dynamic viscosity of the fluid;
v = u/p, kinematic viscosity of the fluid; a = A/pcp, thermal diffusivity of the fluid; © =
(T — Tew)/(Ty -~ Tw), dimensionless temperature drop; and Npy, Prandtl number; K = K¥U,/vx.
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ISOTHERMAL FLOW OF A NON-NEWTONIAN FLUID THROUGH THE
CHANNEL OF A VOLUTE~TYPE DISK PUMP UNDER CONDITIONS
OF COMPLEX SHEAR

V. I. Yankov and V., A, Makarov UDC 532.542:532,135

A study is made pertaining to steady laminar flow of an anomalously viscous fluid
between two rigid disks in one of which the thread has been cut in the form of
an Archimedes spiral.

The advantages of a volute—type disk pump with the thread cut in the form of an Archi-
medes spiral over a conventional volute~type pump are the simplicity of its construction,
the possibility of regulating the clearances between the spiral ridges and the smooth other
disk, and the higher pressure head developed. The use of such pumps in industry is not wide-
spread owing to, apparently, mot only the large axial forces developing in them (which, by
the way, can be successfully reduced by adoption of the bilateral volute construction) but
also the unavailability of a design method.

We will consider the isothermal flow of a non-Newtonian fluid through a volute~type
disk pump consisting of two parallel rigid disks in one of which the thread has been cut in the
form of an Archimedes spiral (Fig. la). The threaded disk is stationary, while the smooth
disk rotates at a constant angular velocity we. It will be assumed in the formulation of the
problem that the channel width S is much larger than the channel depth H and that there are
no clearances between the spiral ridges and the smooth disk, the flow of the fluid being
steady and laminar, All calculations will refer to the median line of the spiral (dash—dot
line on the diagram), considering that the tangential velocity of the smooth disk Vo, = rw, as
well as the lead angle of the spiral § and the pressure gradients 8p/d¢ = Ay, 3p/3r = Ar vary
only along the channel (in the ¢ direction) while remaining constant across its width. Let
the inside radius and the outside radius of the Archimedes spiral be ri and ro, respectively,
The velocity component in the z direction will be disregarded.

In solving this problem we are mostly concerned about the pressure gradients 3p/dox = Ax,
dp/dy = Ay and the flow rate Qx. Accordingly, the vector representing the tangential velo—
city of the smooth disk Vo can be resolved into two components: Vx = Vo cos & and Vy = Vo
sin 6§ (Fig. 1b). '

The equations of motion, in projection on the axes @ and r, can be written as

01, Ay 01,
0z  r ’ 0z
An analysis of the solution to Egs. (1) for a Newtonian fluid has revealed that, with

Vs )

=A4,—p st
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